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2n-point renormalized coupling constants in the three-dimensional Ising model:
Estimates by high temperature series to orderg*’

P. Butera and M. Coml
Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica, UniversiiaMilano, Via Celoria 16, 20133 Milano, Italy
(Received 14 November 1996

We compute the 2-point renormalized coupling constants in the symmetric phase of the three-dimensional
(3D) Ising model on the simple cubic lattice in terms of the high temperature expai@{@é) of the Fourier
transformed R-point connected correlation functions at zero momentum. Our high temperature estimates of
these quantities, which enter into the small field expansion of the effective potential for a 3D scalar field at the
infrared fixed point or, equivalently, in the critical equation of state of the 3D Ising model universality class,
are compared with recent results obtained by renormalization group methods, strong coupling, stochastic
simulations, as well as previous high temperature expandii€63-651X97)00104-9

PACS numbgs): 05.50+q, 11.15.Ha, 64.60.Cn, 75.10.Hk

[. INTRODUCTION tial ingredients for the calculation of the RCC’s. The expan-
sion of the second moment of the two-point correlation
In recent times a considerable effort has been devoted tlunction u,(v) on the sc lattice has been recently extended
the evaluation of the r2point dimensionless renormalized in Ref.[19].
coupling constants$RCC’s) at zero momentum for the Ising In terms of these quantities, the first few RCC'’s, in the
model in three dimensions. These quantities are of interestymmetric phase, are defing2] as the valueg,, (n=2),
for constructing the field theoretic effective potenfibj2] of  that the following expressions:
a three-dimensional3D) scalar field at the infrared fixed

point or, in statistical mechanics language, for the formula- Vo xa(v)

tion of the critical equation of state of the 3D Ising model 9a(v) == 41 53(1)))(5(0)’

universality clas§3—5]. The computational methods, which

so far have been used, include various approximate forms V2 Ye(v) Xfl(v)

[6—11] of the renormalization groufRG), the field theoretic ge(v)= ( 3 35— +105 yi )
611 £v)xa(v) ~ Ev)xa(v)

strong coupling expansiof?], the high temperaturéHT)
expansion[3,4,12—-14, and (single-cluster or multiclustgr

Monte Carlo techniqueks,15-17. 0a(0) = — % Xs(v) g 6(v) xa(v)
In this paper we want to discuss how helpful in getting a 8! gg(v)xg(v) EW)x3(v)

first estimate of the RCC's in the symmetric phase, can be 3

extensive HT expansion data published long Eiff] and so e x3(v)

far only partially analyzed. Indeed expansions as double se- §g(v)xg(v) '

ries in the HT variables =tanh(B) and r=exp(BH), where

B is the inverse temperature, are available for the Ising V4 X10(v) xs(v) x4(v)

model free energy in a magnetic field on various two-, gio(v)= 10,( 12 — + 120 5

three-, and four-dimensional lattices. In particular, in the 3D £ 0)xz(v) &) x2(v)

case the series extend up to or@éf for the simple cubic Xe( ) Xs(v)x4(v)

(so lattice, up tov*3 for the bcc lattice and up to'° for the +1265 5 —— 46205 ——7—

fce lattice. By computing therith derivative of the free en- & )XZ( ) & )X2( )

ergy with respect to the magnetic field at zero field we 4( )

readily obtain the HT expansion of the Fourier transformed +15 40012—

2n-point connected correlation function at zero momentum & )XZ( )

(also called the ath susceptibility take asv Tv.. The volumeV per lattice site has the value 1

for the sc lattice, 4/33 for the bcce lattice, and 12 for the
_ . fcc lattice.

XenlV) XZ'XBZ---'XZn (s(0)s(x)s(xs) - S(xzn)e. (1) We recall that scaling implies that, as the critical tempera-

ture is approached from above, we have,,

These expansions together with that of the second mo=B;,(v.—v) ?~?""2A whereA is the gap exponent. If

ment correlation lengt§?(v) = u,(v)/6x»(v) are the essen- we also assume the validity of hyperscaling, we have

2A=3v+ vy (wherev and vy are the critical exponents gf

and y, respectively, so that the RCC’s are finiteand uni-

*Electronic address: butera@mi.infn.it versa) quantities. The quantities,,, are expectefl20] to be

"Electronic address: comi@mi.infn.it of the form gon(v)=0s,+Asn(ve—0v)+--- as vlve,
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where the dominant universal scaling correction exporent established RG estimatg =0.988(4)[25].
has the valug9=0.50(2)[25] for the 3D Ising model. This discrepancy leads us to investigate whether and to
By changing in the functiong,,(v) the variablev into  what extent these values are also affected by a “systematic”
y=£2(v), we obtain the strong coupling expansions, througherror due to the nonanalytic corrections to scaling which can
the ordery?’, of the functionsy,,(y) [2] whose values at spoil the convergence properties of the PA’s. It has been
y=o give the RCC's. suggested in Ref26] that these corrections can be allowed
Let us add a few comments concerning the HT and thdor, or at least their effects can be significantly reduced, by
strong coupling series coefficients of the, on the sc lattice  performing the quadratic mapping
that we have tabulated, up to ordet’, in the Appendix,
together with the coefficients of the second moment of the
correlation functionu,(v), in order to provide the interested
reader with all data we have used, and, thus, make our cal-
culations easily reproducible. The expansion fgrwas first ~ with p=2.2—1. Essentially the same results are also ob-
computed[21] throughv'” using the data of Ref18], but  tained by using appropriately designed first order differential
only recently could we check it against a completely inde-approximants[27] in which we can bias botlw. and the
pendent linked-cluster computation through the same ordesgcaling correction exponedt We arrive thus at our final set
[19]. We should only draw attention to a minor misprint in of estimates
the last two digits of the coefficient af'? as reported in

(1-2)?
==z

V=0,

Ref. [21]. Concerning the strong coupling expansions, we g; =0.9874), gg =1.5710),

notice that in Ref[2] yg(y) has been tabulated, for any

space dimension, through order'!, while yg(y) and gg =0.9010), g;5=—0.7435). (]
y1(y) through ordery” only. A further significant extension

of all these series can still be performi®]: only then will While the value ofg, is only slightly lowered(and,

a complete check against an independent computation B8ereby, closely reconciled with the most accurate RG esti-
possible for the coefficients tabulated here. mates, the central estimates of the highgfn are signifi-

While this work was being completed, we became awareantly altered and the uncertainties are reduced. Therefore, it
of a related work{14], also devoted to the analysis of the appears that our initial very simple numerical approach was
data of Ref[18], and where also the low temperature side ofrather inadequate and, moreover, we infer that the ampli-
the critical region is studied. We decided, therefore, totudesA,, of the scaling correction terms increase with
present only the part of our computation, mainly concerningrinally, if we notice that the uncertainties of our estimates
the higher RCC’s, which was not already covered by thegrow rapidly with the order of the RCC's, it is clear why,
very thorough discussion of Rdfl4]. In fact the availability =~ with the presently available series, we have to restrict our
of a longer HT expansion of? enables us to also study calculations to the,,, with n<5.
individual RCC’s rather than only ratios among them, and, It is also interesting to study directly other quantities such
moreover, gives access to the strong coupling expansions.as, for instance, appropriate ratios of the functiong(v)

which do not depend og&® and might be less sensitive to the
scaling corrections, as a means to understand better the ac-
Il. NUMERICAL RESULTS tual uncertainties of our numerical procedures. We have

: o
We shall now present our estimates of the first few RCC,Stherefzore considered  the e>fpre35|onT1 —[_ge(v)+/
(v) ]|vTvC and we have obtained the estimaig

as obtained from either the HT or the strong coupling expan94 ) . )
sions and discuss various “biased” or “unbiased” numeri- = 1.75(5) neglecting the confluent singularity and, other-

cal procedures. wise, T{ =1.595). Analogously, we have also examined
In a first and straightforward approach we estimggeby T2 =[9s(v)/94(v)%]l,;,, and have estimated T,
evaluating atv=v. [22-24 near diagonal Padapproxi- =1.29(43) by the first method an@; =0.92(13) by the

mants (PA’s) of the quan_tityfzq(v)Engnmm*e.')(v) which  second, while for T3 =[g1o(v)/ga(v)*][,1,, We obtain
has a Taylor expansion in. This procedure is not conve- TH=-0.7(7) andT:=—0.35(20), respectively. All esti-
nient for extrapolatingga(v), which changes its sign at aieg of ther* are then completely consistent with the cor-
some O<vy<wv.. In this case we should consider instead theresponding separate estimates of 5. Notice that the
:i);%r?;s'or}rﬁllj ZC)(;?QQE? ' OV:‘?'Ch) avlvseo ohbiaiir? tEZytlaosrtir?]);ng'- T;" are simply related to the coefficierfs of the smalll field
F_q (;) 3 T 19 % XU:Cl 53(36) at.— —2.0(9 " expansion of the “reduced effective potential” computed in
94 =1.03), gs =1.998), g =1.53(36).019= ~2.0(9).  pot [10] as follows: T =96F,, T;=1728, and
Here, as in the rest of this report, our estimates are giveR _ oo 76/16 ! v '
by a suitably weighted average over the results from the 3Let us also regéll that long ago the sequence of universal
approximants using at least 14 series coefficients and the litud binati 9 g+ _ q r /
uncertainties are measured, conservatively, only on the basf&"P itude combinations 15, 3=[x2(v) X2r+4(U+)
of the spread of the results obtained from the highest apX4 (V)1lo1o,: F=1, which are strictly related to th&;",
proximants, always allowing also for tifeuch smalleref- ~ was introduced in Ref[28] and, by using 12 term series
fects of the errors i, and 6. [12], the first few |;" were estimated to bdd=7.73,
It should be noticed that the central estimateggf ob- 17 =157.5, and g =6180 (with no indication of errox. Our
tained above is slightly, but significantly larger than the wellestimates, by using the direct PA procedure, are
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|£=7.81(3), 17 =161.13), | § =6395(21), while if we al- obtained in Ref[13] from a 16 term HT series. Our result for
low for the scaling corrections, we find I4 in Eq. (3) is also not far from the recent estimate
| =7.84(2) of Ref.[14]. As to the strong coupling ap-
ls =7.927), |;=1654), 15=6809120. (3) proach, we recall that in Ref2] the estimateys =1.2(1)
was obtained from an 11 term strong coupling series.

As it appears from the smaller difference between the It is also interesting to perform a comparison with the
results of the two kinds of numerical procedures, THeand  results obtained in the most extensive recent RG sfa6y,
especially the ;" turn out to be less sensitive to the scaling by the fixed dimensioiFD) expansior{25] up to five loop
corrections than thg,, and, therefore, we assume that theyorder, resummed by the Borel-Leroy technique combined
can be be determined with higher relative accuracy. It isWith an appropriate confqrmal mapping. The estimate of
therefore, interesting to notice that from the above estimat@s agrees perfectly with ours, the central values
of 17 we get the valuggg =1.626). Unfortunately, how- ¢ =1.603(6) andgg =0.82(8) agree with ours within
ever, at the present level of accuracy, the other simple rela=2% and=9%, respectively. On the other hand, the larger
tons among the higherT;” and the I, like disagreement about the value @f, should not be taken too
T =22(+135—56/; +280), etc., which follow from the seriously becausg, as noted _above, the uncertainty which af-

fects the calculation grows with the order of the RCC. Let us
also return to a previous remark, in noticing that from the
estimates ofF; in Ref. [25] one arrives at the values
| =7.9457), 1; =167.45(65), andg =6718(81), in very
close agreement with our estimates in B2). Unfortunately,

definitions of theg,,, cannot be used for improving the
estimates of the highef,”, and, therefore, of the corre-
spondingg,,,, by expressing them in terms of th¢ . For
instance T, turns out to be a small difference between large
numbers and the uncertainty lof is strongly amplified. For |7 and 14 are actually rather insensitive to the values of
similar reasons it is also not useful to start directly with the,:7 andF.

critical amplitudes of they,, .

An unbiased study of the RCC’s can be performed start;
ing with the strong coupling expansion. In REZ] an elabo-
rate extrapolation procedure was proposed which involve
the dependence of the series coefficients on the space dim 1. On the other hand, from a three loop computation, values
sionality. We have not yet computed this dependence up g™ ~, - i P P '
orderv1’ and, therefore, we cannot reproduce this procedurd®” 9 have been obtainef] which range from 0.68 to
We can, however, try the simplest approach to evaluaté-71, depending on the resummation procedure. _
von(2), which consists in formingN+1/N] PA's to the The approximate truncation of the RG flow equations

quantityyy2@~3(y) and in dividing them byy. This pro- studied in Ref[6] yields g; =1.2 andgg =2.25, which are
th clearly larger than our values, although the ratio

cedure is not very efficient and the only reasonably stablé’? > ) k
results obtained arg; =1.1(1),g7 =2.1(2),9; =1.9(2). 06 /94 “=1.56 agrees well with our estimate. An analogous,

We can also evaluate the ratids by diagonal PA's: but lower order truncation of the RG flow equatiqd4] had

: +
again we find reasonable results only fof =1.81(4). All givengg =2.40. .
these values are consistent with our previous first evaIuatioB Thee—4—d3expan5|on approach has not yet been pushed
of these quantities. eyond ordere®. It has _been use+d, in RdflO],tho produce
Alternatively, we can generalize a technique introduced ir'FhfJ (rather large estimates g, = 1.167, g¢ =2.305),
Ref. [29], which consists in inverting the functions 9s =1.248), and g;;=—1.97(12). Notice however that,
Zon= 7223 (y) (after checking that the dependence of SiNCe glso the est|mate+gﬁf is unusually large, the corre-
Z,, Ony is monotonig¢ and in determiningg;, from the spondmg values of th& (or of theF;) agree very glosely
value ofz,,,, wherey=y(z,,,) diverges. This is conveniently W'+th the results from the FD approach. Theexpansion of
done by forming PA’s of the logarithmic derivativepf The ~ Ti was examined also in Reff7], where by a PadBorel
results are them, =1.01(2), g4 =1.636), g5 =1.05(15). resummation the estimafe” = 1.653 was obtained.
As indicated above, these procedures cannot be used for Finally, we recall that the Monte Carlo simulations of
computinggy,. Ref. [5] indicategg =2.05(15), which is not very far from
In conclusion, we believe that the general consistencyur estimate, while the simulations described in R&f]
among the results obtained by applying suitable approximaindicate the valuesyg =2.7(2) andgg =4.3(6), signifi-
tion procedures to various quantities with somewhat differencantly larger than both the RG results and ours. A summary
properties corroborates our estimates in &j. of the present situation is presented in Table | which collects
our estimates of the RCC’s along with the corresponding
ones obtained by other methods.

We also ought to recall that an independent calculation in
he FD scheme gave the estimatgs=1.50 in the two loop
approximation[7], g4 =1.622 at three loop order with a
E’gdeBoreI resummatior{8], and g4 =1.596 at four loops

Ill. A COMPARISON WITH OTHER ESTIMATES

Let us now proceed to a comparison with the results al-
ready available in the literature. Our values in EB) for
g; and for gg are not far from the estimates  We may conclude that although the various computational
g, =1.018(1) andgg =1.793(16) obtained in Ref[14]  approaches do not yet agree perfectly, they do appear to
from the analysis of the same HT series. A similar remarkconverge to common estimates at least for the lowest RCC's.
applies to the estimateg, =0.988(60) andgy =1.92(24) Therefore, in view of the difficulty of these calculations, we

IV. CONCLUSIONS
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TABLE I. A summary of the estimates @, by various methods.

Method and Ref. gs ge gs 9%
HT 0.9874) 1.5710) 0.9010) —0.71(35)
Strong coupl. 1.0) 1.635) 1.059)

HT [14] 1.0196) 1.79138)
HT [13] 0.98860) 1.9224)
RG FD expans[10] 0.98712) 1.6036) 0.838) —1.96(1.26)
RG FD expans[8,9] 1.596 0.68-2.71
RG € expans[10] 1.167 2.305) 1.248) -1.97(12)
RG approx[6] 1.2 2.25
RG approx[11] 2.40
Strong coupl[2] 0.98610) 1.2(1)
MC [5] 0.972) 2.0515)
MC [16] 1.02 2.12) 4.36)
believe that the present residual discrepancies should not be ACKNOWLEDGMENTS
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distance is=s/2n, so that present HT expansions, in some

sense, still describe a rather “small” system. Analogous

problems of size also occur in stochastic simulations APPENDIX: SERIES EXPANSIONS

[5,16,17. Therefore further effort would still be welcome to

improve the reliability, the precision and, as a result, the In the case of the sc lattice the HT expansion of the sus-
consistency of the various approaches. ceptibilities x»,, are

X2(v)=1+6v+30w%+ 1503+ 7260*+ 3510 °+ 16 71@°+ 79 494 '+ 375 1748+ 1 769 686 °+ 8 306 862 1°
+38 975 286 11+ 182 265 82212+ 852 063 55813
+3 973 784 886+ 18 527 532 310'°+ 86 228 667 89416+ 401 225 368 086"+ - - -,

xa(v)=—2—48 —63@2— 6480356 316*— 441 360 °— 3 208 812°5—22 059 120 '— 145 118 8448
—921 726 704°—5 687 262 0121°— 34 255 147 920'!— 202 130 397 708'%— 1 171 902 072 144*3
—6 691 059 944 460M— 37 693 869 995 312'°— 209 838 929 195 580°— 1 155 875 574 355 632 '— - - -,

xs(v)=16+816 + 19 92(0)%+ 336 720>+ 4 518 816+ 51 745 680°+ 527 187 600°+ 4 909 918 704’
+42 581 232 864°+ 348 466 330 096°+ 2 717 492 365 392'%+ 20 347 129 869 456
+147 133 138 147 8722+ 1 032 333 377 642 448°+ 7 054 626 581 880 336*
+47 100 223 055 946 160°+ 308 027 458 769 860 704%+ 1 977 507 018 022 916 0&67+ - - -,

xs(v)=—272—23808 — 917 37@>—23 013 120°— 437 798 496*— 6 852 038 400°— 92 654 596 992°
—1117 875 129 600’ — 12 306 018 523 104 — 125 633 562 017 024 — 1 204 105 704 419 712°
—10936 791 715 557 120'— 94 844 317 893 543 6482— 789 993 027 282 411 264°
—6 351 007 395 937 161 608*— 49 478 915 100 503 151 87%— 374 818 460 005 448 106 72t
—2768 750 733 973561 834 752 — - - -
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X10(v) =+ 7936+ 1 061 376 + 59 036 1602+ 2 049 776 646°+ 52 252 083 456"+ 1 067 338 759 686
+18 429 925 693 4468+ 278 749 670 360 064 + 3 786 553 881 275 9@4+ 47 053 476 826 003 458
+542 381 843 641 961 473°+ 5 862 580 439 606 155 7#6'+ 59 934 902 216 969 609 47%
+583 578 982 058 859 276 288+ 5 442 873 762 995 091 611 138
+48 857 090 955 221 240 911 36t5+ 423 771 319 439 035 687 985 G664
+3 563 795 335 882 672 497 655 296+ - - -

The HT expansion of the second moment of the correlation fungtiprs
wo(v)=6v+720%+ 5823+ 4032 %+ 25 542)°+ 153 00@ 6+ 880 422 ' +4 920 5768+ 26 879 670°+ 144 230 0881°
+762 587 91011+ 3 983 525 95212+ 20 595 680 69413+ 105 558 845 736+ 536 926 539 990"°
+2 713 148 048 256'5+ 13 630 071 574 614"7- - - .

The strong coupling expansions of the, to ordery!’ are

—-3/2
va(y)= 5 [1+12y+ 6y>+48y>—630y*+7272°—83 293/5+957 313'— 11 035 66§°+ 127 433 52§°

—1 472 947 908°+ 17 036 529 50¢*1— 197 169 806 67%>+ 2 283 416 559 216"
—26 463 582 511 368+ 306 946 999 598 144°— 3 563 327 123 879 5536
+41 404 188 226 284 130'— - - -],
Ye(y) = y3—03[1+ 18y +90y?+ 48y + 576y*— 83525+ 114 528°—1 528 41§+ 19 952 7198 — 255 983 479°
+3 240 722 599%°— 40 613 845 3921+ 505 052 958 33¢°— 6 242 882 909 47A2'3+ 76 802 505 994 234+
—941 288 338 072 752°+ 11 501 158 664 782 098°— 140 176 233 789 711 696'+ - - -],

—-9/2
ve(Y)= g [1+24y+ 192y?+576y3+ 54y*+6720/°— 113 016°+1 753 633’ — 25 771 32§°

+364 798 039°— 5 028 161 239+ 67 958 735 808''— 904 828 659 219"+ 11 905 472 505 7973
—155 154 712 361 530*+ 2 006 059 450 196 288°— 25 765 180 820 314 3748
+329 050 927 608 994 294"— . . .1,

ny

1Y) = g [1+30y+ 330y2+1620/3+ 3330/*— 1080/°+ 67 200/°— 1 314 729’ +22 683 00§°— 363 847 60§°

+5 564 033 049'0— 82 249 187 5291+ 1 185 208 196 160'*— 16 740 515 134 8083

+232 658 153 938 560“— 3 190 497 478 487 4435+ 43 262 377 733 737 930°

—581 022 341 984 542 568+ - - - 1.
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