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2n-point renormalized coupling constants in the three-dimensional Ising model:
Estimates by high temperature series to orderb17

P. Butera* and M. Comi†

Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica, Universita` di Milano, Via Celoria 16, 20133 Milano, Italy
~Received 14 November 1996!

We compute the 2n-point renormalized coupling constants in the symmetric phase of the three-dimensional
~3D! Ising model on the simple cubic lattice in terms of the high temperature expansionsO(b17) of the Fourier
transformed 2n-point connected correlation functions at zero momentum. Our high temperature estimates of
these quantities, which enter into the small field expansion of the effective potential for a 3D scalar field at the
infrared fixed point or, equivalently, in the critical equation of state of the 3D Ising model universality class,
are compared with recent results obtained by renormalization group methods, strong coupling, stochastic
simulations, as well as previous high temperature expansions.@S1063-651X~97!00104-9#

PACS number~s!: 05.50.1q, 11.15.Ha, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

In recent times a considerable effort has been devote
the evaluation of the 2n-point dimensionless renormalize
coupling constants~RCC’s! at zero momentum for the Isin
model in three dimensions. These quantities are of inte
for constructing the field theoretic effective potential@1,2# of
a three-dimensional~3D! scalar field at the infrared fixed
point or, in statistical mechanics language, for the formu
tion of the critical equation of state of the 3D Ising mod
universality class@3–5#. The computational methods, whic
so far have been used, include various approximate fo
@6–11# of the renormalization group~RG!, the field theoretic
strong coupling expansion@2#, the high temperature~HT!
expansion@3,4,12–14#, and ~single-cluster or multicluster!
Monte Carlo techniques@5,15–17#.

In this paper we want to discuss how helpful in getting
first estimate of the RCC’s in the symmetric phase, can
extensive HT expansion data published long ago@18# and so
far only partially analyzed. Indeed expansions as double
ries in the HT variablesv5tanh(b) andt5exp(bH), where
b is the inverse temperature, are available for the Is
model free energy in a magnetic fieldH on various two-,
three-, and four-dimensional lattices. In particular, in the
case the series extend up to orderv17 for the simple cubic
~sc! lattice, up tov13 for the bcc lattice and up tov10 for the
fcc lattice. By computing the 2nth derivative of the free en
ergy with respect to the magnetic field at zero field
readily obtain the HT expansion of the Fourier transform
2n-point connected correlation function at zero moment
~also called the 2nth susceptibility!

x2n~v !5 (
x2 ,x3 , . . . ,x2n

^s~0!s~x2!s~x3!•••s~x2n!&c . ~1!

These expansions together with that of the second
ment correlation lengthj2(v)5m2(v)/6x2(v) are the essen
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tial ingredients for the calculation of the RCC’s. The expa
sion of the second moment of the two-point correlati
functionm2(v) on the sc lattice has been recently extend
in Ref. @19#.

In terms of these quantities, the first few RCC’s, in t
symmetric phase, are defined@2# as the valuesg2n

1 (n>2),
that the following expressions:

g4~v !52
V

4!

x4~v !

j3~v !x2
2~v !

,

g6~v !5
V2

6! S 2
x6~v !

j6~v !x2
3~v !

110
x4
2~v !

j6~v !x2
4~v !

D ,
g8~v !5

V3

8! S 2
x8~v !

j9~v !x2
4~v !

156
x6~v !x4~v !

j9~v !x2
5~v !

2280
x4
3~v !

j9~v !x2
6~v !

D ,
g10~v !5

V4

10! S 2
x10~v !

j12~v !x2
5~v !

1120
x8~v !x4~v !

j12~v !x2
6~v !

1126
x6
2~v !

j12~v !x2
6~v !

24620
x6~v !x4

2~v !

j12~v !x2
7~v !

115 400
x4
4~v !

j12~v !x2
8~v !

D
take asv↑vc . The volumeV per lattice site has the value
for the sc lattice, 4/3A3 for the bcc lattice, and 1/A2 for the
fcc lattice.

We recall that scaling implies that, as the critical tempe
ture is approached from above, we havex2n

.B2n
1 (vc2v)2g2(2n22)D, whereD is the gap exponent. If

we also assume the validity of hyperscaling, we ha
2D53n1g ~wheren andg are the critical exponents ofj
andx, respectively!, so that the RCC’s are finite~and uni-
versal! quantities. The quantitiesg2n are expected@20# to be
of the form g2n(v).g2n

1 1A2n
1 (vc2v)u1••• as v↑vc ,
6391 © 1997 The American Physical Society
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where the dominant universal scaling correction exponenu
has the valueu50.50(2) @25# for the 3D Ising model.

By changing in the functionsg2n(v) the variablev into
y5j2(v), we obtain the strong coupling expansions, throu
the ordery17, of the functionsg2n(y) @2# whose values a
y5` give the RCC’s.

Let us add a few comments concerning the HT and
strong coupling series coefficients of thex2n on the sc lattice
that we have tabulated, up to orderv17, in the Appendix,
together with the coefficients of the second moment of
correlation functionm2(v), in order to provide the intereste
reader with all data we have used, and, thus, make our
culations easily reproducible. The expansion forx4 was first
computed@21# throughv17 using the data of Ref.@18#, but
only recently could we check it against a completely ind
pendent linked-cluster computation through the same o
@19#. We should only draw attention to a minor misprint
the last two digits of the coefficient ofv12, as reported in
Ref. @21#. Concerning the strong coupling expansions,
notice that in Ref.@2# g6(y) has been tabulated, for an
space dimension, through ordery11, while g8(y) and
g10(y) through ordery

7 only. A further significant extension
of all these series can still be performed@19#: only then will
a complete check against an independent computation
possible for the coefficients tabulated here.

While this work was being completed, we became aw
of a related work@14#, also devoted to the analysis of th
data of Ref.@18#, and where also the low temperature side
the critical region is studied. We decided, therefore,
present only the part of our computation, mainly concern
the higher RCC’s, which was not already covered by
very thorough discussion of Ref.@14#. In fact the availability
of a longer HT expansion ofj2 enables us to also stud
individual RCC’s rather than only ratios among them, a
moreover, gives access to the strong coupling expansion

II. NUMERICAL RESULTS

We shall now present our estimates of the first few RC
as obtained from either the HT or the strong coupling exp
sions and discuss various ‘‘biased’’ or ‘‘unbiased’’ nume
cal procedures.

In a first and straightforward approach we estimateg2n
1 by

evaluating atv5vc @22–24# near diagonal Pade` approxi-
mants ~PA’s! of the quantity f 2n(v)[g2n

22/(3n23)(v) which
has a Taylor expansion inv. This procedure is not conve
nient for extrapolatingg10(v), which changes its sign a
some 0,v0,vc . In this case we should consider instead t
expression (v/vc)

6g10(v), which also has a Taylor expan
sion in v. Thus, ~biasing onlyvc) we obtain the estimates
g4

151.03(3), g6
151.93(8), g8

151.53(36),g10
1 522.0(9).

Here, as in the rest of this report, our estimates are gi
by a suitably weighted average over the results from
approximants using at least 14 series coefficients and
uncertainties are measured, conservatively, only on the b
of the spread of the results obtained from the highest
proximants, always allowing also for the~much smaller! ef-
fects of the errors invc andu.

It should be noticed that the central estimate ofg4
1 ob-

tained above is slightly, but significantly larger than the w
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established RG estimateg4
150.988(4) @25#.

This discrepancy leads us to investigate whether and
what extent these values are also affected by a ‘‘systema
error due to the nonanalytic corrections to scaling which c
spoil the convergence properties of the PA’s. It has be
suggested in Ref.@26# that these corrections can be allowe
for, or at least their effects can be significantly reduced,
performing the quadratic mapping

v5vcF12
~12z!2

~12z/p!2G ,
with p52A221. Essentially the same results are also o
tained by using appropriately designed first order differen
approximants@27# in which we can bias bothvc and the
scaling correction exponentu. We arrive thus at our final se
of estimates

g4
150.987~4!, g6

151.57~10!,

g8
150.90~10!, g10

1 520.71~35!. ~2!

While the value ofg4
1 is only slightly lowered~and,

thereby, closely reconciled with the most accurate RG e
mates!, the central estimates of the higherg2n

1 are signifi-
cantly altered and the uncertainties are reduced. Therefo
appears that our initial very simple numerical approach w
rather inadequate and, moreover, we infer that the am
tudesA2n

1 of the scaling correction terms increase withn.
Finally, if we notice that the uncertainties of our estimat
grow rapidly with the order of the RCC’s, it is clear why
with the presently available series, we have to restrict
calculations to theg2n

1 with n<5.
It is also interesting to study directly other quantities su

as, for instance, appropriate ratios of the functionsg2n(v)
which do not depend onj2 and might be less sensitive to th
scaling corrections, as a means to understand better the
tual uncertainties of our numerical procedures. We ha
therefore considered the expressionT1

1[@g6(v)/
g4(v)

2#uv↑vc and we have obtained the estimateT1
1

51.75(5) neglecting the confluent singularity and, oth
wise, T1

151.59(5). Analogously, we have also examine
T2

1[@g8(v)/g4(v)
3#uv↑vc and have estimated T2

1

51.29(43) by the first method andT2
150.92(13) by the

second, while for T3
1[@g10(v)/g4(v)

4#uv↑vc we obtain

T3
1520.7(7) andT3

1520.35(20), respectively. All esti-
mates of theT1 are then completely consistent with the co
responding separate estimates of theg2n

1 . Notice that the
Ti

1 are simply related to the coefficientsFi of the small field
expansion of the ‘‘reduced effective potential’’ computed
Ref. @10# as follows: T1

1596F5, T2
151728F7, and

T3
15331 776/10F9.
Let us also recall that long ago the sequence of unive

amplitude combinations I 2r13
1 [@x2(v)

rx2r14(v)/
x4
r11(v)#uv↑vc, r>1, which are strictly related to theTi

1 ,
was introduced in Ref.@28# and, by using 12 term serie
@12#, the first few I i

1 were estimated to beI 5
157.73,

I 7
15157.5, andI 9

156180 ~with no indication of error!. Our
estimates, by using the direct PA procedure,
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I 5
157.81(3), I 7

15161.7(3), I 9
156395(21), while if we al-

low for the scaling corrections, we find

I 5
157.92~7!, I 7

15165~4!, I 9
156809~120!. ~3!

As it appears from the smaller difference between
results of the two kinds of numerical procedures, theTi

1 and
especially theI i

1 turn out to be less sensitive to the scali
corrections than theg2n

1 and, therefore, we assume that th
can be be determined with higher relative accuracy. It
therefore, interesting to notice that from the above estim
of I 5

1 we get the valueg6
151.62(6). Unfortunately, how-

ever, at the present level of accuracy, the other simple r
tions among the higher Ti

1 and the I i
1 , like

T2
15 12

35 (1I 7
1256I 5

11280), etc., which follow from the
definitions of theg2n

1 , cannot be used for improving th
estimates of the higherTi

1 , and, therefore, of the corre
spondingg2n

1 , by expressing them in terms of theI i
1 . For

instance,T2
1 turns out to be a small difference between lar

numbers and the uncertainty ofI 5
1 is strongly amplified. For

similar reasons it is also not useful to start directly with t
critical amplitudes of thex2n .

An unbiased study of the RCC’s can be performed st
ing with the strong coupling expansion. In Ref.@2# an elabo-
rate extrapolation procedure was proposed which invol
the dependence of the series coefficients on the space di
sionality. We have not yet computed this dependence u
orderv17 and, therefore, we cannot reproduce this proced
We can, however, try the simplest approach to evalu
g2n(`), which consists in forming@N11/N# PA’s to the
quantityyg2n

2/(3n23)(y) and in dividing them byy. This pro-
cedure is not very efficient and the only reasonably sta
results obtained areg4

151.1(1),g6
152.1(2),g8

151.9(2).
We can also evaluate the ratiosTi

1 by diagonal PA’s:
again we find reasonable results only forT1

151.81(4). All
these values are consistent with our previous first evalua
of these quantities.

Alternatively, we can generalize a technique introduced
Ref. @29#, which consists in inverting the function
z2n5g2n

22/(3n23)(y) ~after checking that the dependence
z2n on y is monotonic! and in determiningg2n

1 from the
value ofz2n , wherey5y(z2n) diverges. This is conveniently
done by forming PA’s of the logarithmic derivative ofy. The
results are theng4

151.01(2), g6
151.63(6), g8

151.05(15).
As indicated above, these procedures cannot be used
computingg10

1 .
In conclusion, we believe that the general consiste

among the results obtained by applying suitable approxi
tion procedures to various quantities with somewhat differ
properties corroborates our estimates in Eq.~2!.

III. A COMPARISON WITH OTHER ESTIMATES

Let us now proceed to a comparison with the results
ready available in the literature. Our values in Eq.~2! for
g4

1 and for g6
1 are not far from the estimate

g4
151.018(1) andg6

151.793(16) obtained in Ref.@14#
from the analysis of the same HT series. A similar rem
applies to the estimatesg4

150.988(60) andg6
151.92(24)
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obtained in Ref.@13# from a 16 term HT series. Our result fo
I 5

1 in Eq. ~3! is also not far from the recent estima
I 5

157.84(2) of Ref. @14#. As to the strong coupling ap
proach, we recall that in Ref.@2# the estimateg6

151.2(1)
was obtained from an 11 term strong coupling series.

It is also interesting to perform a comparison with t
results obtained in the most extensive recent RG study@10#,
by the fixed dimension~FD! expansion@25# up to five loop
order, resummed by the Borel-Leroy technique combin
with an appropriate conformal mapping. The estimate
g4

1 agrees perfectly with ours, the central valu
g6

151.603(6) andg8
150.82(8) agree with ours within

.2% and.9%, respectively. On the other hand, the larg
disagreement about the value ofg10

1 should not be taken too
seriously because, as noted above, the uncertainty which
fects the calculation grows with the order of the RCC. Let
also return to a previous remark, in noticing that from t
estimates ofFi in Ref. @25# one arrives at the value
I 5

157.945(7), I 7
15167.45(65), andI 9

156718(81), in very
close agreement with our estimates in Eq.~3!. Unfortunately,
I 7

1 and I 9
1 are actually rather insensitive to the values

F7 andF9.
We also ought to recall that an independent calculation

the FD scheme gave the estimatesg6
1.1.50 in the two loop

approximation@7#, g6
1.1.622 at three loop order with a

Padè-Borel resummation@8#, and g6
1.1.596 at four loops

@9#. On the other hand, from a three loop computation, val
for g8

1 have been obtained@8# which range from 0.68 to
2.71, depending on the resummation procedure.

The approximate truncation of the RG flow equatio
studied in Ref.@6# yields g4

151.2 andg6
152.25, which are

both clearly larger than our values, although the ra
g6

1/g4
1251.56 agrees well with our estimate. An analogou

but lower order truncation of the RG flow equations@11# had
giveng6

152.40.
Thee542d expansion approach has not yet been pus

beyond ordere3. It has been used, in Ref.@10#, to produce
the ~rather large! estimates g4

151.167, g6
152.30(5),

g8
151.24(8), and g10

1 521.97(12). Notice however that
since also the estimate ofg4

1 is unusually large, the corre
sponding values of theTi

1 ~or of theFi) agree very closely
with the results from the FD approach. Thee expansion of
Ti

1 was examined also in Ref.@7#, where by a Pade`-Borel
resummation the estimateTi

151.653 was obtained.
Finally, we recall that the Monte Carlo simulations

Ref. @5# indicateg6
152.05(15), which is not very far from

our estimate, while the simulations described in Ref.@16#
indicate the valuesg6

152.7(2) and g8
154.3(6), signifi-

cantly larger than both the RG results and ours. A summ
of the present situation is presented in Table I which colle
our estimates of the RCC’s along with the correspond
ones obtained by other methods.

IV. CONCLUSIONS

We may conclude that although the various computatio
approaches do not yet agree perfectly, they do appea
converge to common estimates at least for the lowest RC
Therefore, in view of the difficulty of these calculations, w
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TABLE I. A summary of the estimates ofg2n
1 by various methods.

Method and Ref. g4
1 g6

1 g8
1 g10

1

HT 0.987~4! 1.57~10! 0.90~10! 20.71(35)
Strong coupl. 1.01~1! 1.63~5! 1.05~9!

HT @14# 1.019~6! 1.791~38!
HT @13# 0.988~60! 1.92~24!
RG FD expans.@10# 0.987~2! 1.603~6! 0.83~8! 21.96(1.26)
RG FD expans.@8,9# 1.596 0.68–2.71
RG e expans.@10# 1.167 2.30~5! 1.24~8! 21.97(12)
RG approx.@6# 1.2 2.25
RG approx.@11# 2.40
Strong coupl.@2# 0.986~10! 1.2~1!

MC @5# 0.97~2! 2.05~15!
MC @16# 1.02 2.7~2! 4.3~6!
t
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believe that the present residual discrepancies should no
overemphasized. Thee expansion is certainly still too shor
and perhaps, even for the FD expansions, a further exten
would be welcome. The HT series presented here are no
long enough, the more so the higher the order of the R
considered. Indeed, we might argue that, at the ordervs, the
dominant contributions to the HT expansion ofx2n(v) come
from correlation functions of spins whose average relat
distance is.s/2n, so that present HT expansions, in som
sense, still describe a rather ‘‘small’’ system. Analogo
problems of size also occur in stochastic simulatio
@5,16,17#. Therefore further effort would still be welcome t
improve the reliability, the precision and, as a result,
consistency of the various approaches.
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APPENDIX: SERIES EXPANSIONS

In the case of the sc lattice the HT expansion of the s
ceptibilitiesx2n are
x2~v !5116v130v21150v31726v413510v5116 710v6179 494v71375 174v811 769 686v918 306 862v10

138 975 286v111182 265 822v121852 063 558v13

13 973 784 886v14118 527 532 310v15186 228 667 894v161401 225 368 086v171•••,

x4~v !522248v2636v226480v3256 316v42441 360v523 208 812v6222 059 120v72145 118 844v8

2921 726 704v925 687 262 012v10234 255 147 920v112202 130 397 708v1221 171 902 072 144v13

26 691 059 944 460v14237 693 869 995 312v152209 838 929 195 580v1621 155 875 574 355 632v172•••,

x6~v !5161816v119 920v21336 720v314 518 816v4151 745 680v51527 187 600v614 909 918 704v7

142 581 232 864v81348 466 330 096v912 717 492 365 392v10120 347 129 869 456v11

1147 133 138 147 872v1211 032 333 377 642 448v1317 054 626 581 880 336v14

147 100 223 055 946 160v151308 027 458 769 860 704v1611 977 507 018 022 916 016v171•••,

x8~v !52272223 808v2917 376v2223 013 120v32437 798 496v426 852 038 400v5292 654 596 992v6

21 117 875 129 600v7212 306 018 523 104v82125 633 562 017 024v921 204 105 704 419 712v10

210 936 791 715 557 120v11294 844 317 893 543 648v122789 993 027 282 411 264v13

26 351 007 395 937 161 600v14249 478 915 100 503 151 872v152374 818 460 005 448 106 720v16

22 768 750 733 973 561 834 752v172•••
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x10~v !51793611 061 376v159 036 160v212 049 776 640v3152 252 083 456v411 067 338 759 680v5

118 429 925 693 440v61278 749 670 360 064v713 786 553 881 275 904v8147 053 476 826 003 456v9

1542 381 843 641 961 472v1015 862 580 439 606 155 776v11159 934 902 216 969 609 472v12

1583 578 982 058 859 276 288v1315 442 873 762 995 091 611 136v14

148 857 090 955 221 240 911 360v151423 771 319 439 035 687 985 664v16

13 563 795 335 882 672 497 655 296v171•••.

The HT expansion of the second moment of the correlation functionm2 is

m2~v !56v172v21582v314032v4125 542v51153 000v61880 422v714 920 576v8126 879 670v91144 230 088v10

1762 587 910v1113 983 525 952v12120 595 680 694v131105 558 845 736v141536 926 539 990v15

12 713 148 048 256v16113 630 071 574 614v17•••.

The strong coupling expansions of theg2n to ordery17 are

g4~y!5
y23/2

12
@1112y16y2148y32630y417272y5283 292y61957 312y7211 035 662y81127 433 528y9

21 472 947 908y10117 036 529 504y112197 169 806 676y1212 283 416 559 216y13

226 463 582 511 368y141306 946 999 598 144y1523 563 327 123 879 550y16

141 404 188 226 284 120y172•••#,

g6~y!5
y23

30
@1118y190y2148y31576y428352y51114 528y621 528 416y7119 952 712y82255 983 472y9

13 240 722 592y10240 613 845 392y111505 052 958 336y1226 242 882 909 472y13176 802 505 994 224y14

2941 288 338 072 752y15111 501 158 664 782 008y162140 176 233 789 711 696y171•••#,

g8~y!5
y29/2

56
@1124y1192y21576y3154y416720y52113 016y611 753 632y7225 771 326y8

1364 798 032y925 028 161 232y10167 958 735 808y112904 828 659 212y12111 905 472 505 792y13

2155 154 712 361 520y1412 006 059 450 196 288y15225 765 180 820 314 374y16

1329 050 927 608 994 224y172•••#,

g10~y!5
y26

90
@1130y1330y211620y313330y421080y5167 200y621 314 720y7122 683 000y82363 847 600y9

15 564 033 040y10282 249 187 520y1111 185 208 196 160y12216 740 515 134 800y13

1232 658 153 938 560y1423 190 497 478 487 440y15143 262 377 733 737 920y16

2581 022 341 984 542 560y171•••#.
k
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